Published in

IOP Publishing, Journal of Physics: Condensed Matter, 32(31), p. 325902, 2019

DOI: 10.1088/1361-648x/ab15d0

Links

Tools

Export citation

Search in Google Scholar

Many-body perturbation theory calculations using the yambo code

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo’s capabilities include the calculation of linear response quantities (both independent-particle and including electron–hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron–phonon interactions to the implementation of a real-time propagation scheme for simulating linear and non-linear optical properties. Improvements to numerical algorithms and the user interface are outlined. Particular emphasis is given to the new and efficient parallel structure that makes it possible to exploit modern high performance computing architectures. Finally, we demonstrate the possibility to automate workflows by interfacing with the yambopy and AiiDA software tools.