Published in

BioMed Central, BMC Bioinformatics, 1(8), 2007

DOI: 10.1186/1471-2105-8-456

Links

Tools

Export citation

Search in Google Scholar

The Firegoose: two-way integration of diverse data from different bioinformatics web resources with desktop applications

Journal article published in 2007 by J. Christopher Bare ORCID, Paul T. Shannon, Amy K. Schmid, Nitin S. Baliga
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Information resources on the World Wide Web play an indispensable role in modern biology. But integrating data from multiple sources is often encumbered by the need to reformat data files, convert between naming systems, or perform ongoing maintenance of local copies of public databases. Opportunities for new ways of combining and re-using data are arising as a result of the increasing use of web protocols to transmit structured data. Results The Firegoose, an extension to the Mozilla Firefox web browser, enables data transfer between web sites and desktop tools. As a component of the Gaggle integration framework, Firegoose can also exchange data with Cytoscape, the R statistical package, Multiexperiment Viewer (MeV), and several other popular desktop software tools. Firegoose adds the capability to easily use local data to query KEGG, EMBL STRING, DAVID, and other widely-used bioinformatics web sites. Query results from these web sites can be transferred to desktop tools for further analysis with a few clicks. Firegoose acquires data from the web by screen scraping, microformats, embedded XML, or web services. We define a microformat, which allows structured information compatible with the Gaggle to be embedded in HTML documents. We demonstrate the capabilities of this software by performing an analysis of the genes activated in the microbe Halobacterium salinarum NRC-1 in response to anaerobic environments. Starting with microarray data, we explore functions of differentially expressed genes by combining data from several public web resources and construct an integrated view of the cellular processes involved. Conclusion The Firegoose incorporates Mozilla Firefox into the Gaggle environment and enables interactive sharing of data between diverse web resources and desktop software tools without maintaining local copies. Additional web sites can be incorporated easily into the framework using the scripting platform of the Firefox browser. Performing data integration in the browser allows the excellent search and navigation capabilities of the browser to be used in combination with powerful desktop tools.