Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Zeitschrift für Kristallographie - Crystalline Materials, 6(234), p. 401-413, 2019

DOI: 10.1515/zkri-2019-0005

Links

Tools

Export citation

Search in Google Scholar

Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach

Journal article published in 2019 by Atekeh Tarahhomi, Arie van der Lee, Dan G. Dumitrescu ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Two new phosphoric triamides having a common part XP(O)[NHCH(CH3)2]2, with X =[2,3,6-F3–C6H2C(O)NH] (1) and [C6H11(CH3)N] (2), were prepared and characterized by spectroscopic techniques (FT-IR and 1H-, 13C-, 31P-NMR) and single crystal X-ray diffraction. The asymmetric unit of 1 is composed of one molecule, whereas for 2 it consists of six symmetry independent molecules. In all molecules, the P atoms are in a distorted tetrahedral environment of one oxygen and three nitrogen atoms. The latter have mainly sp 2 character and a nearly planar environment. The crystal structures are stabilized via N–H · · · O hydrogen bond interactions, forming a linear arrangement for 1 and three independent parallel linear chains for 2, along the b and a axis, respectively. The intermolecular interactions in the molecular packing were analyzed using the Hirshfeld surface methodology, two-dimensional (2D) fingerprint plots and enrichment ratios (E). The prevalent interactions revealed by Hirshfeld surfaces are O · · · H type interactions for both structures 1 and 2, additionally C · · · O for 1 and H · · · H interactions for 2. The most favored contacts responsible for the molecular packing are C · · · F, N · · · H and O · · · H for 1 confirmed by E values greater than 1.30, whereas for 2, O · · · H and N · · · H intermolecular interactions with E values about 1.04 representing the favored contacts. Thus, the N–H · · · O hydrogen bond interactions are the dominant interactions in both compounds. For more details, a topological AIM analysis of N–H · · · O hydrogen bond interactions was performed: NCP–H · · · O=C hydrogen bond (the NCP is referred to the nitrogen atom within the C(O)NHP(O) segment) interactions in 1 are stronger than N–H · · · O=P interactions in both 1 and 2. Furthermore, a 3D topology of the molecular packing via the energy framework approach showed that the N–H · · · O hydrogen bond interactions in C(O)NHP(O)-based phosphoric triamide are predominantly electrostatic based, while they are electrostatic-dispersion based for other phosphoric triamides with a [N]P(O)[NH]2 skeleton.