Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 3(111), p. 912-917, 2014

DOI: 10.1073/pnas.1321999111

Links

Tools

Export citation

Search in Google Scholar

Attosecond vacuum UV coherent control of molecular dynamics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance We show that we can precisely control molecular dynamics on both nuclear (i.e., femtosecond) and electronic (i.e., attosecond) timescales. By using attosecond vacuum UV light pulse trains that are tunable in the frequency domain, we show that it is possible to switch population between electronically excited states of a neutral molecule on attosecond time scales, and use this ability to coherently control excitation and ionization through specific pathways. This paper represents a milestone advance because almost two decades after attosecond physics was demonstrated, attosecond chemistry has not yet been fully established because the wavelength and bandwidth of attosecond pulses did not well match molecular quantum states. The richness and complexity of the dynamics, even in a simple molecule, is remarkable and daunting.