Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj 2D Materials and Applications, 1(3), 2019

DOI: 10.1038/s41699-019-0105-7

Links

Tools

Export citation

Search in Google Scholar

Highly stretchable graphene nanoribbon springs by programmable nanowire lithography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGraphene nanoribbons are ideal candidates to serve as highly conductive, flexible, and transparent interconnections, or the active channels for nanoelectronics. However, patterning narrow graphene nanoribbons to <100 nm wide usually requires inefficient micro/nano fabrication processes, which are hard to implement for large area or flexible electronic and sensory applications. Here, we develop a precise and scalable nanowire lithography technology that enables reliable batch manufacturing of ultra-long graphene nanoribbon arrays with programmable geometry and narrow width down to ~50 nm. The orderly graphene nanoribbons are patterned out of few-layer graphene sheets by using ultra-long silicon nanowires as masks, which are produced via in-plane solid–liquid–solid guided growth and then transferred reliably onto various stiff or flexible substrates. More importantly, the geometry of the graphene nanoribbons can be predesigned and engineered into elastic two-dimensional springs to achieve outstanding stretchability of >30%, while carrying stable and repeatable electronic transport. We suggest that this convenient scalable nanowire lithography technology has great potential to establish a general and efficient strategy to batch-pattern or integrate various two-dimensional materials as active channels and interconnections for emerging flexible electronic applications.