Published in

Springer Nature [academic journals on nature.com], Light: Science and Applications, 1(8), 2019

DOI: 10.1038/s41377-019-0155-9

Links

Tools

Export citation

Search in Google Scholar

Impressive near-infrared brightness and singlet oxygen generation from strategic lanthanide–porphyrin double-decker complexes in aqueous solution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAlthough lanthanide double-decker complexes with hetero-macrocyclic ligands as functional luminescent and magnetic materials have promising properties, their inferior water solubility has negated their biomedical applications. Herein, four water-soluble homoleptic lanthanide (Ln = Gd, Er, Yb and La) sandwiches with diethylene-glycol-disubstituted porphyrins (DD) are reported, with their structures proven by both quantum chemical calculations and scanning tunneling microscopy. Our findings demonstrate that the near-infrared emission intensity and singlet oxygen (1O2) quantum yields of YbDD and GdDD in aqueous media are higher than those of the reported capped lanthanide monoporphyrinato analogues, YbN and GdN; the brightness and luminescence lifetime in water of YbDD are greater than those of YbN. This work provides a new dimension for the future design and development of molecular theranostics-based water-soluble double-decker lanthanide bisporphyrinates.