Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 6(46), p. 1696-1708, 2007

DOI: 10.1021/ie061186z

Links

Tools

Export citation

Search in Google Scholar

Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid

Journal article published in 2007 by B. Girisuta, L. P. B. M. Janssen, H. J. Heeres ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is reported in this paper. The kinetic experiments were performed in a temperature window of 150-200 °C, sulfuric acid concentrations between 0.05 and 1 M, and initial cellulose intakes between 1.7 and 14 wt %. The highest yield of levulinic was 60 mol %, obtained at a temperature of 150 °C, an initial cellulose intake of 1.7 wt %, and a sulfuric acid concentration of 1 M. A full kinetic model covering a broad range of reaction conditions was developed using the power-law approach. Agreement between the experimental data and the kinetic model is good. The kinetic expressions were used to gain insights into the optimum process conditions for the conversion of cellulose to levulinic acid in continuous-reactor configurations. The model predicts that the highest obtainable levulinic acid yield in continuous-reactor configurations is about 76 mol %, which was obtained when using reactors with a large extent of backmixing.