Published in

Copernicus Publications, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (XLII-2/W11), p. 1165-1172, 2019

DOI: 10.5194/isprs-archives-xlii-2-w11-1165-2019

Links

Tools

Export citation

Search in Google Scholar

Distance-Training for Image-Based 3d Modelling of Archeological Sites in Remote Regions

Journal article published in 2019 by V. Yordanov ORCID, A. Mostafavi, M. Scaioni ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The impressive success of Structure-from-Motion Photogrammetry (SfM) has spread out the application of image-based 3D reconstruction to a larger community. In the field of Archeological Heritage documentation, this has opened the possibility of training local people to accomplish photogrammetric data acquisition in those remote regions where the organization of 3D surveying missions from outside may be difficult, costly or even impossible. On one side, SfM along with low-cost cameras makes this solution viable. On the other, the achievement of high-quality photogrammetric outputs requires a correct image acquisition stage, being this the only stage that necessarily has to be accomplished locally. This paper starts from the analysis of the well-know “3×3 Rules” proposed in 1994 when photogrammetry with amateur camera was the state-of-the art approach and revises those guidelines to adapt to SfM. Three aspects of data acquisition are considered: geometry (control information, photogrammetric network), imaging (camera/lens selection and setup, illumination), and organization. These guidelines are compared to a real case study focused on Ziggurat Chogha Zanbil (Iran), where four blocks from ground stations and drone were collected with the purpose of 3D modelling.