Earlier studies on hospitalization risk are largely based on regression models. To our knowledge, network modeling of multiple comorbidities is novel and inherently enables multidimensional scoring and unbiased feature reduction. Network modeling was conducted using an independent validation design starting from 38,695 patients, 1,446,581 visits, and 430 distinct clinical facilities/hospitals. Odds ratios (OR) were calculated for every pair of comorbidity using patient counts and compared their tendency with hospitalization rates and ED visits. Network topology analyses were performed, defining significant comorbidity associations as having OR≥5 & False-Discovery-Rate≤10-7. Four COPD-associated comorbidity sub-networks emerged, incorporating multiple clinical systems: (i) metabolic syndrome, (ii) substance abuse and mental disorder, (iii) pregnancy-associated conditions, and (iv) fall-related injury. The latter two have not been reported yet. Features prioritized from the network are predictive of hospitalizations in an independent set (p<0.004). Therefore, we suggest that network topology is a scalable and generalizable method predictive of hospitalization.