Published in

SAGE Publications, Contact, (1), p. 251525641881993, 2018

DOI: 10.1177/2515256418819936

Links

Tools

Export citation

Search in Google Scholar

The Rod-Shaped ATG2A-WIPI4 Complex Tethers Membranes In Vitro

Journal article published in 2018 by Takanori Otomo ORCID, Saikat Chowdhury ORCID, Gabriel C. Lander
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The autophagosome precursor membrane, termed the isolation membrane or phagophore, emerges adjacent to a phosphatidylinositol 3-phosphate (PI3P)-enriched transient subdomain of the endoplasmic reticulum called the omegasome, thereafter expanding to engulf cytoplasmic content. Uncovering the molecular events that occur in the vicinity of the omegasome during phagophore biogenesis is imperative for understanding the mechanisms involved in this critical step of the autophagy pathway. We recently characterized the ATG2A-WIPI4 complex, one of the factors that localize to the omegasome and play a critical role in mediating phagophore expansion. Our structural and biochemical studies revealed that ATG2A is a rod-shaped protein with membrane-interacting properties at each end, endowing ATG2A with membrane-tethering capability. Association of the PI3P-binding protein WIPI4 at one of the ATG2A tips enables the ATG2A-WIPI4 complex to specifically tether PI3P-containing membranes to non-PI3P-containing membranes. We proposed models for the ATG2A-WIPI4 complex-mediated membrane associations between the omegasome and surrounding membranes, including the phagophore edge, the endoplasmic reticulum, ATG9 vesicles, and COPII vesicles.