Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (989), 2007

DOI: 10.1557/proc-0989-a09-04

Links

Tools

Export citation

Search in Google Scholar

Stability of amorphous silicon thin film transistors under prolonged high compressive strain

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe studied the effect of prolonged mechanical strain on the electrical characteristics of thin-film transistors of hydrogenated amorphous silicon made at a process temperature of 150°C on 51-μm thick Kapton polyimide foil substrates. Effects are observed only at very high compressive strain of 1.8%. Tensile strain up to fracture at 0.3% to 0.5% does not show any effect, nor does compressive strain substantially less than 1.8%. The TFTs were stressed for times up to 23 days by bending around a tube with axis perpendicular to the channel length, and were evaluated in the flattened state. The changes observed are small. The threshold voltage is increased, the “on” current and the field effect mobility remain essentially constant, and the subthreshold slope, “off” current and gate leakage current drop somewhat. Overall, the observed changes are small. We conclude that mechanical strain caused by roll-to-roll processing and permanent shaping will have negligible effects on TFT performance.