Dissemin is shutting down on January 1st, 2025

Published in

EDP Sciences, EPJ Web of Conferences, (210), p. 06011, 2019

DOI: 10.1051/epjconf/201921006011

Links

Tools

Export citation

Search in Google Scholar

Prospects of testing an UHECR single source class model with the K-EUSO orbital telescope

Journal article published in 2019 by Oleg Kalashev ORCID, Maxim Pshirkov, Mikhail Zotov
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

KLYPVE-EUSO (K-EUSO) is a planned orbital detector of ultra-high energy cosmic rays (UHECRs), which is to be deployed on board the International Space Station. K-EUSO is expected to have a uniform exposure over the celestial sphere and register from 120 to 500 UHECRs at energies above 57 EeV in a 2-year mission. We employed the TransportCR and CRPropa 3 packages to estimate prospects of testing a minimal single source class model for extragalactic cosmic rays and neutrinos by Kachelrieß, Kalashev, Ostapchenko and Semikoz (2017) with K-EUSO in terms of the large-scale anisotropy. Nearby active galactic nuclei Centaurus A, M82, NGC 253, M87 and Fornax A were considered as possible sources of UHECRs. We demonstrate that an observation of more than 200 events will allow testing predictions of the model with a high confidence level providing the fraction of events arriving from any of the sources is ^10-15%, with a smaller contribution for larger samples. These numbers agree with theoretical expectations of a possible contribution of a single source in the UHECR flux. Thus, K-EUSO can provide good opportunities for verifying the minimal model basing on an analysis of the large-scale anisotropy of arrival directions of UHECRs.