EDP Sciences, EPJ Web of Conferences, (210), p. 06011, 2019
DOI: 10.1051/epjconf/201921006011
Full text: Download
KLYPVE-EUSO (K-EUSO) is a planned orbital detector of ultra-high energy cosmic rays (UHECRs), which is to be deployed on board the International Space Station. K-EUSO is expected to have a uniform exposure over the celestial sphere and register from 120 to 500 UHECRs at energies above 57 EeV in a 2-year mission. We employed the TransportCR and CRPropa 3 packages to estimate prospects of testing a minimal single source class model for extragalactic cosmic rays and neutrinos by Kachelrieß, Kalashev, Ostapchenko and Semikoz (2017) with K-EUSO in terms of the large-scale anisotropy. Nearby active galactic nuclei Centaurus A, M82, NGC 253, M87 and Fornax A were considered as possible sources of UHECRs. We demonstrate that an observation of more than 200 events will allow testing predictions of the model with a high confidence level providing the fraction of events arriving from any of the sources is ^10-15%, with a smaller contribution for larger samples. These numbers agree with theoretical expectations of a possible contribution of a single source in the UHECR flux. Thus, K-EUSO can provide good opportunities for verifying the minimal model basing on an analysis of the large-scale anisotropy of arrival directions of UHECRs.