Published in

Springer, Lecture Notes in Computer Science, p. 196-203, 2012

DOI: 10.1007/978-3-642-33418-4_25

Links

Tools

Export citation

Search in Google Scholar

A Framework for Quantifying Node-Level Community Structure Group Differences in Brain Connectivity Networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We propose a framework for quantifying node-level community structures between groups using anatomical brain networks derived from DTI-tractography. To construct communities, we computed hierarchical binary trees by maximizing two metrics: the well-known modularity metric (Q), and a novel metric that measures the difference between inter-community and intra-community path lengths. Changes in community structures on the nodal level were assessed between generated trees and a statistical framework was developed to detect local differences between two groups of community structures. We applied this framework to a sample of 42 subjects with major depression and 47 healthy controls. Results showed that several nodes (including the bilateral precuneus, which have been linked to self-awareness) within the default mode network exhibited significant differences between groups. These findings are consistent with those reported in previous literature, suggesting a higher degree of ruminative self-reflections in depression.