Published in

Oxford University Press, Journal of Experimental Botany, 9(60), p. 2725-2735, 2009

DOI: 10.1093/jxb/erp128

Links

Tools

Export citation

Search in Google Scholar

13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Intense efforts are currently devoted to disentangling the relationships between plant carbon (C) allocation patterns and soil nitrogen (N) availability because of their consequences for growth and more generally for C sequestration. In cold ecosystems, only a few studies have addressed whole-plant C and/or N allocation along natural elevational or topographical gradients. (12)C/(13)C and (14)N/(15)N isotope techniques have been used to elucidate C and N partitioning in two alpine graminoids characterized by contrasted nutrient economies: a slow-growing species, Kobresia myosuroides (KM), and a fast-growing species, Carex foetida (CF), located in early and late snowmelt habitats, respectively, within the alpine tundra (French Alps). CF allocated higher labelling-related (13)C content belowground and produced more root biomass. Furthermore, assimilates transferred to the roots were preferentially used for growth rather than respiration and tended to favour N reduction in this compartment. Accordingly, this species had higher (15)N uptake efficiency than KM and a higher translocation of reduced (15)N to aboveground organs. These results suggest that at the whole-plant level, there is a compromise between N acquisition/reduction and C allocation patterns for optimized growth.