Published in

Impact Journals, Oncotarget, 21(5), p. 10916-10933, 2014

DOI: 10.18632/oncotarget.2538

Links

Tools

Export citation

Search in Google Scholar

Angiostatic, tumor inflammatory and anti-tumor effects of CXCL447–70 and CXCL4L147–70 in an EGF-dependent breast cancer model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL447–70 and CXCL4L147–70 previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL447–70 and CXCL4L147–70 to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL447–70 and CXCL4L147–70 was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL447–70 and CXCL4L147–70 efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL447–70 reduced tumor growth better than CXCL4L147–70. In CXCL447–70-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN-γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL447–70 or CXCL4L147–70. Finally, CXCL447–70 and CXCL4L147–70 inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL447–70 or CXCL4L147–70 treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential.