Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Environment and Planning B: Urban Analytics and City Science, 1(48), p. 60-75, 2019

DOI: 10.1177/2399808319847204

Links

Tools

Export citation

Search in Google Scholar

Connecting the city: A three-dimensional pedestrian network of Hong Kong

Journal article published in 2019 by Guibo Sun ORCID, Chris Webster ORCID, Xiaohu Zhang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The purpose of the paper is to investigate how a three-dimensional pedestrian network reshapes connectivity and helps to integrate the built environment of high-density cities. Using the case of Hong Kong, first, we elaborate how a continuous three-dimensional network constitutes an entirely different urban morphological spatial hierarchy compared to two-dimensional because of the footbridge system, underground connected with metro stations, and paths connected with mall developments. Second, we construct a three-dimensional pedestrian network model classifying segments into 23 categories with multi-height levels (e.g. sidewalk, footbridge, underground, crosswalk, ramp, paths on the building roof). Then we map the three-dimensional network for Hong Kong territory in a geographic information system, finding that the three-dimensional pedestrian network is 2.4 times in length and 8.5 times in link size greater than the road network. Connectivity comparison through a betweenness measure found striking differences between the two networks and indicated that footbridges and underground links could enhance walkability when they are well connected with the ground-level networks. Since road networks are widely used as a proxy for pedestrian analysis, we suggest that active travel optimisation planning, especially in high-density cities, requires a bespoke three-dimensional pedestrian model. The three-dimensional pedestrian network, enabling multi-level city living in a vertical metropolis, is a fundamental consideration in urban planning and design practices for high-density cities.