Published in

Wiley, Proteomics, 19(10), p. 3533-3538, 2010

DOI: 10.1002/pmic.201000189

Links

Tools

Export citation

Search in Google Scholar

LTQ-iQuant: A freely-available software pipeline for automated and accurate protein quantification of isobaric tagged peptide data from LTQ instruments

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pulsed Q dissociation enables combining LTQ ion trap instruments with isobaric peptide tagging. Unfortunately, this combination lacks a technique which accurately reports protein abundance ratios and is implemented in a freely-available, flexible software pipeline. We developed and implemented a technique assigning collective reporter ion intensity-based weights to each peptide abundance ratio and calculating a protein’s weighted average abundance ratio and P value. Using an iTRAQ-labeled standard mixture, we compared our technique’s performance to the commercial software Mascot, finding that it performed better than Mascot’s non-weighted averaging and median peptide ratio techniques, and equal to its weighted averaging technique. We also compared performance of the LTQ-Orbitrap plus our technique to 4800 MALDI TOF/TOF plus Protein Pilot, by analyzing an iTRAQ-labeled stem cell lysate. We found highly correlated protein abundance ratios, indicating that the LTQ-Orbitrap plus our technique yields results comparable to the current standard. We implemented our technique in a freely available, automated software pipeline, called LTQ-iQuant, which: is mzXML-compatible; supports iTRAQ 4-plex and 8-plex LTQ data; and can be modified for and have weights trained to a user’s LTQ and other isobaric peptide tagging methods. LTQ-iQuant should make LTQ instruments and isobaric peptide tagging accessible to more proteomics researchers.