Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Stem Cells International, (2019), p. 1-11, 2019

DOI: 10.1155/2019/7869130

Links

Tools

Export citation

Search in Google Scholar

Therapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of Glaucoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Glaucoma represents a group of progressive optic neuropathies characterized by gradual loss of retinal ganglion cells (RGCs), the neurons that conduct visual information from the retina to the brain. Elevated intraocular pressure (IOP) is considered the main reason for enhanced apoptosis of RGCs in glaucoma. Currently used therapeutic agents are not able to repopulate and/or regenerate injured RGCs and, therefore, are ineffective in most patients with advanced glaucoma. Accordingly, several new therapeutic approaches, including stem cell-based therapy, have been explored for the glaucoma treatment. In this review article, we emphasized current knowledge regarding molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cells (MSCs) and their secretome in the treatment of glaucoma. MSCs produce neurotrophins and in an exosome-dependent manner supply injured RGCs with growth factors enhancing their survival and regeneration. Additionally, MSCs are able to generate functional RGC-like cells and induce proliferation of retinal stem cells. By supporting integrity of trabecular meshwork, transplanted MSCs alleviate IOP resulting in reduced loss of RGCs. Moreover, MSCs are able to attenuate T cell-driven retinal inflammation providing protection to the injured retinal tissue. In summing up, due to their capacity for neuroprotection and immunomodulation, MSCs and their secretome could be explored in upcoming clinical studies as new therapeutic agents for glaucoma treatment.