Published in

Springer Nature [academic journals on nature.com], British Journal of Cancer, 8(80), p. 1252-1258, 1999

DOI: 10.1038/sj.bjc.6690493

Links

Tools

Export citation

Search in Google Scholar

Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate

Journal article published in 1999 by L. Qiu, M. J. Kelso, C. Hansen, M. L. West, D. P. Fairlie, P. G. Parsons ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of hydroxamates, which are not metalloprotease inhibitors, have been found to be selectively toxic to a range of transformed and human tumour cells without killing normal cells (fibroblasts, melanocytes) at the same concentrations. Within 24 h of treatment, drug action is characterized by morphological reversion of tumour cells to a more normal phenotype (dendritic morphology), and rapid and reversible acetylation of histone H4 in both tumour and normal cells. Two hydroxamates inhibited growth of xenografts of human melanoma cells in nude mice; resistance did not develop in vivo or in vitro. A third hydroxamate, trichostatin A, was active in vitro but became inactivated and had no anti-tumour activity in vivo. Development of dendritic morphology was found to be dependent upon phosphatase activity, RNA and protein synthesis. Proliferating hybrid clones of sensitive and resistant cells remained sensitive to ABHA, indicating a dominant-negative mechanism of sensitivity. Histone H4 hyperacetylation suggests that these agents act at the chromatin level. This work may lead to new drugs that are potent, and selective anti-tumour agents with low toxicity to normal cells.