Published in

BMJ Publishing Group, Journal of Clinical Pathology, 2(72), p. 157-164, 2018

DOI: 10.1136/jclinpath-2018-205328

Links

Tools

Export citation

Search in Google Scholar

Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AimsTo evaluate if a deep learning algorithm can be trained to identify tumour-infiltrating lymphocytes (TILs) in tissue samples of testicular germ cell tumours and to assess whether the TIL counts correlate with relapse status of the patient.MethodsTILs were manually annotated in 259 tumour regions from 28 whole-slide images (WSIs) of H&E-stained tissue samples. A deep learning algorithm was trained on half of the regions and tested on the other half. The algorithm was further applied to larger areas of tumour WSIs from 89 patients and correlated with clinicopathological data.ResultsA correlation coefficient of 0.89 was achieved when comparing the algorithm with the manual TIL count in the test set of images in which TILs were present (n=47). In the WSI regions from the 89 patient samples, the median TIL density was 1009/mm2. In seminomas, none of the relapsed patients belonged to the highest TIL density tertile (>2011/mm2). TIL quantifications performed visually by three pathologists on the same tumours were not significantly associated with outcome. The average interobserver agreement between the pathologists when assigning a patient into TIL tertiles was 0.32 (Kappa test) compared with 0.35 between the algorithm and the experts, respectively. A higher TIL density was associated with a lower clinical tumour stage, seminoma histology and lack of lymphovascular invasion.ConclusionsDeep learning–based image analysis can be used for detecting TILs in testicular germ cell cancer more objectively and it has potential for use as a prognostic marker for disease relapse.