Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, International Journal of Food Science, (2019), p. 1-15, 2019

DOI: 10.1155/2019/5837301

Links

Tools

Export citation

Search in Google Scholar

High Throughput Sequencing Technologies as a New Toolbox for Deep Analysis, Characterization and Potentially Authentication of Protection Designation of Origin Cheeses?

Journal article published in 2019 by Elena Kamilari, Marios Tomazou ORCID, Athos Antoniades, Dimitrios Tsaltas ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Protected Designation of Origin (PDO) labeling of cheeses has been established by the European Union (EU) as a quality policy that assures the authenticity of a cheese produced in a specific region by applying traditional production methods. However, currently used scientific methods for differentiating and establishing PDO are limited in terms of time, cost, accuracy and their ability to identify through quantifiable methods PDO fraud. Cheese microbiome is a dynamic community that progressively changes throughout ripening, contributing via its metabolism to unique qualitative and sensorial characteristics that differentiate each cheese. High Throughput Sequencing (HTS) methodologies have enabled the more precise identification of the microbial communities developed in fermented cheeses, characterization of their population dynamics during the cheese ripening process, as well as their contribution to the development of specific organoleptic and physio-chemical characteristics. Therefore, their application may provide an additional tool to identify the key microbial species that contribute to PDO cheeses unique sensorial characteristics and to assist to define their typicityin order to distinguish them from various fraudulent products. Additionally, they may assist the cheese-makers to better evaluate the quality, as well as the safety of their products. In this structured literature review indications are provided on the potential for defining PDO enabling differentiating factors based on distinguishable microbial communities shaped throughout the ripening procedures associated to cheese sensorial characteristics, as revealed through metagenomic and metatranscriptomic studies. Conclusively, HTS applications, even though still underexploited, have the potential to demonstrate how the cheese microbiome can affect the ripening process and sensorial characteristics formation via the catabolism of the available nutrients and interplay with other compounds of the matrix and/or production of microbial origin metabolites and thus their further quality enhancement.