Published in

MDPI, Molecules, 2(24), p. 217, 2019

DOI: 10.3390/molecules24020217

Links

Tools

Export citation

Search in Google Scholar

Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal

Journal article published in 2019 by Yahong Han, Bing Gao, Shengnan Zhao, Mengyan Wang ORCID, Lin Jian, Lujia Han, Xian Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A novel ultra-high performance liquid chromatography (UHPLC) procedure, coupled with tandem mass spectrometry (MS/MS), was established for the analysis of anserine (ANS) and carnosine (CAR) in meat and bone meal (MBM) (bovine, ovine, porcine, and poultry origins). The pretreatment strategies were optimized for four types of MBM samples prior to UHPLC-MS/MS analysis. This method allowed determining CAR and ANS in short analysis time (18 min per sample). The limits of detection (LODs) and limits of quantification (LOQs) of two analytes in four types of MBM samples were in the ranges of 0.41–3.07 ng/g and 0.83–5.71 ng/g, respectively. The recovery rates spiked with low, intermediate, and high levels of two analytes in four types of MBM samples were 48.53–98.93%, 60.12–98.94%, and 67.90–98.92%, respectively. Acceptable inter-day reproducibility (RSD < 12.63%) supported the application of this proposed method for determining CAR and ANS in MBM samples. Overall, this rapid, effective, and robust method was successfully applied for quantitative detection of CAR and ANS in MBM samples. Furthermore, The CAR/ANS ratio was found to be in the decreasing order: porcine > bovine > ovine > poultry MBM. This proposed methodology was novelly applied to identify the biomarker (CAR/ANS ratio) for species-specific identification of MBM.