Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-42649-1

Links

Tools

Export citation

Search in Google Scholar

Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThis study was designed to evaluate if primary open angle glaucoma (POAG) and its severity are associated with the shape of the lamina cribrosa (LC) as measured by a global shape index (LC-GSI), or other indices of LC curvature or depth. Optical coherence tomography (OCT) scans of the optic nerve head (OHN) were obtained from subjects with POAG (n = 99) and non-glaucomatous controls (n = 76). ONH structures were delineated, the anterior LC morphology reconstructed in 3D, and the LC-GSI calculated (more negative values denote greater posterior concavity). Anterior LC depth and 2D-curvature were also measured. Severity of glaucoma was defined by the extent of visual field loss, based on the Hodapp-Parrish-Anderson grading. Linear regression analyses compared LC characteristics between controls, mild-moderate, and advanced POAG groups. After adjusting for age, gender, ethnicity, intraocular pressure, axial length and corneal curvature, the LC-GSI was most negative in the advanced POAG group (mean [standard error] = −0.34 [0.05]), followed by the mild-moderate POAG group (−0.31 [0.02]) and then controls (−0.23 [0.02], PTrend = 0.01). There was also a significant trend of increasing LC depth and greater LC horizontal curvature with increasing severity of glaucoma (PTrend = 0.04 and 0.02, respectively). Therefore, with more severe glaucoma, the LC-GSI was increasingly more negative, and the anterior LC depth and curvature greater. These observations collectively correspond to greater cupping of the ONH at the level of the LC. As the LC-GSI describes the 3D anterior LC morphology, its potential usage may be complementary to existing ONH parameters measured on OCT.