Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-43194-7

Links

Tools

Export citation

Search in Google Scholar

The material properties of naked mole-rat hyaluronan

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHyaluronan (HA) is a key component of the extracellular matrix. Given the fundamental role of HA in the cancer resistance of the naked mole-rat (NMR), we undertook to explore the structural and soft matter properties of this species-specific variant, a necessary step for its development as a biomaterial. We examined HA extracted from NMR brain, lung, and skin, as well as that isolated from the medium of immortalised cells. In common with mouse HA, NMR HA forms a range of assemblies corresponding to a wide distribution of molecular weights. However, unique to the NMR, are highly folded structures, whose characteristic morphology is dependent on the tissue type. Skin HA forms tightly packed assemblies that have spring-like mechanical properties in addition to a strong affinity for water. Brain HA forms three dimensional folded structures similar to the macroscopic appearance of the gyri and sulci of the human brain. Lung HA forms an impenetrable mesh of interwoven folds in a morphology that can only be described as resembling a snowman. Unlike HA that is commercially available, NMR HA readily forms robust gels without the need for chemical cross-linking. NMR HA gels sharply transition from viscoelastic to elastic like properties upon dehydration or repeated loading. In addition, NMR HA can form ordered thin films with an underlying semi-crystalline structure. Given the role of HA in maintaining hydration in the skin it is plausible that the folded structures contribute to both the elasticity and youthfulness of NMR skin. It is also possible that such densely folded materials could present a considerable barrier to cell invasion throughout the tissues, a useful characteristic for a biomaterial.