Published in

Oxford University Press, Stem Cells, 7(27), p. 1592-1603, 2009

DOI: 10.1002/stem.77

Links

Tools

Export citation

Search in Google Scholar

Regulation of Boundary Cap Neural Crest Stem Cell Differentiation After Transplantation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Success of cell replacement therapies for neurological disorders will depend largely on the optimization of strategies to enhance viability and control the developmental fate of stem cells after transplantation. Once transplanted, stem/progenitor cells display a tendency to maintain an undifferentiated phenotype or differentiate into inappropriate cell types. Gain and loss of function experiments have revealed key transcription factors which drive differentiation of immature stem/progenitor cells toward more mature stages and eventually to full differentiation. An attractive course of action to promote survival and direct the differentiation of transplanted stem cells to a specific cell type would therefore be to force expression of regulatory differentiation molecules in already transplanted stem cells, using inducible gene expression systems which can be controlled from the outside. Here, we explore this hypothesis by employing a tetracycline gene regulating system (Tet-On) to drive the differentiation of boundary cap neural crest stem cells (bNCSCs) toward a sensory neuron fate after transplantation. We induced the expression of the key transcription factor Runx1 in Sox10-expressing bNCSCs. Forced expression of Runx1 strongly increased transplant survival in the enriched neurotrophic environment of the dorsal root ganglion cavity, and was sufficient to guide differentiation of bNCSCs toward a nonpeptidergic nociceptive sensory neuron phenotype both in vitro and in vivo after transplantation. These findings suggest that exogenous activation of transcription factors expression after transplantation in stem/progenitor cell grafts can be a constructive approach to control their survival as well as their differentiation to the desired type of cell and that the Tet-system is a useful tool to achieve this. Disclosure of potential conflicts of interest is found at the end of this article.