Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 5(11), p. 954, 2019

DOI: 10.3390/nu11050954

Links

Tools

Export citation

Search in Google Scholar

Acute Dietary Nitrate Supplementation Improves Flow Mediated Dilatation of the Superficial Femoral Artery in Healthy Older Males

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3−) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3−) or placebo (NO3−-depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2−) and NO3−, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3− and placebo. Placebo had no effect but NO3− led to an 8.6-fold increase in plasma NO2−, which was accompanied by an increase in FMD (NO3−: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3−: −8.7 ± 11.6% vs. placebo: −4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3− improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3− supplementation in older adults.