Links

Tools

Export citation

Search in Google Scholar

Combinatorial electrochemistry using metal nanoparticles: from proof-of-concept to practical realisation for bromide detection.

Journal article published in 2007 by Biljana Sljukić ORCID, Ronan Baron, Chris Salter, Alison Crossley, Rg Compton
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Principles and practical application of combinatorial electrochemistry in search for new electroactive materials in electroanalysis have been explored. Nanoparticles of three different metals: silver, gold and palladium have been independently synthesized on the glassy carbon spherical powder surface by electroless deposition process and characterized using both spectroscopic and electrochemical techniques. These three materials were then combined together onto basal plane pyrolytic graphite electrode surface and the application of the combinatorial approach to find the electrode material for bromide detection as model target analyte was demonstrated. The component electroactive for bromide detection was next identified and it was found that silver nanoparticles were the active ones. A composite electrode based on silver nanoparticle modified glassy carbon powder and epoxy resin was then fabricated and it was found to allow accurate determination of bromide. The electroactivity for the bromide determination of the composite electrode was compared with that of a bulk silver electrode and it was shown that the composite electrode is very efficient with a comparable electroactivity with only a portion of precious metals being used for its construction.