Published in

MDPI, Materials, 8(12), p. 1229, 2019

DOI: 10.3390/ma12081229

Links

Tools

Export citation

Search in Google Scholar

Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rechargeable batteries are attractive power storage equipment for a broad diversity of applications. Lithium-ion (Li-ion) batteries are widely used the superior rechargeable battery in portable electronics. The increasing needs in portable electronic devices require improved Li-ion batteries with excellent results over many discharge-recharge cycles. One important approach to ensure the electrodes’ integrity is by increasing the storage capacity of cathode and anode materials. This could be achieved using nanoscale-sized electrode materials. In the article, we review the recent advances and perspectives of carbon nanomaterials as anode material for Lithium-ion battery applications. The first section of the review presents the general introduction, industrial use, and working principles of Li-ion batteries. It also demonstrates the advantages and disadvantages of nanomaterials and challenges to utilize nanomaterials for Li-ion battery applications. The second section of the review describes the utilization of various carbon-based nanomaterials as anode materials for Li-ion battery applications. The last section presents the conclusion and future directions.