Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Urban Science, 2(3), p. 41, 2019

DOI: 10.3390/urbansci3020041

Links

Tools

Export citation

Search in Google Scholar

Integrating Data Mining and Microsimulation Modelling to Reduce Traffic Congestion: A Case Study of Signalized Intersections in Dhaka, Bangladesh

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A growing body of research has applied intelligent transportation technologies to reduce traffic congestion at signalized intersections. However, most of these studies have not considered the systematic integration of traffic data collection methods when simulating optimum signal timing. The present study developed a three-part system to create optimized variable signal timing profiles for a congested intersection in Dhaka, regulated by fixed-time traffic signals. Video footage of traffic from the studied intersection was analyzed using a computer vision tool that extracted traffic flow data. The data underwent a further data-mining process, resulting in greater than 90% data accuracy. The final data set was then analyzed by a local traffic expert. Two hybrid scenarios based on the data and the expert’s input were created and simulated at the micro level. The resultant, custom, variable timing profiles for the traffic signals yielded a 40% reduction in vehicle queue length, increases in average travel speed, and a significant overall reduction in traffic congestion.