Published in

MDPI, Molecules, 7(24), p. 1386, 2019

DOI: 10.3390/molecules24071386

Links

Tools

Export citation

Search in Google Scholar

A Simple and Efficient Method for the Partial Synthesis of Pure (3R,3’S)-Astaxanthin from (3R,3’R,6’R)-Lutein and Lutein Esters via (3R,3’S)-Zeaxanthin and Theoretical Study of Their Formation Mechanisms

Journal article published in 2019 by Eloy Rodríguez-Deleón, J. Jiménez-Halla ORCID, José Báez, M. Bah
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Carotenoids are natural compounds that have important roles in promoting and maintaining human health. Synthetic astaxanthin is a highly requested product by the aquaculture industry, but natural astaxanthin is not. Various strategies have been developed to synthesize this carotenoid. Nonetheless, these approaches have not only provided limited global yields, but its main commercial source also carries several health risks for humans. In this contribution, the one-pot base-catalyzed reaction of (3R,3’R,6’R)-lutein (1) esters has resulted in a successful isomerization process to easily obtain up to 95% meso-zeaxanthin (2), which in turn is oxidized to (3R,3’S)-astaxanthin (3) with a global yield of 68%. The same oxidation performed with UV irradiation (365 nm) for 5 min provided the highest global yield (76%). These chemical transformations have also been achieved with a significant reduction of the health risks associated with its potential human consumption. Furthermore, this is the first time only one of the configurational isomers has been obtained semisynthetically. The poorly understood formation mechanisms of these two compounds were also investigated using Density-Functional Theory (DFT) calculations. These theoretical studies revealed that the isomerization involves a base-catalyzed deprotonation at C-6’, followed by C-4’ protonation, while the oxidation occurs via free radical mechanisms.