Published in

American Scientific Publishers, Journal of Computational and Theoretical Nanoscience, 2(16), p. 373-380, 2019

DOI: 10.1166/jctn.2019.8110

Links

Tools

Export citation

Search in Google Scholar

Molecular Modeling Approach to Investigate the Intercalation of Phthalates and Their Metabolites in DNA Macromolecules

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies have reported that phthalates are capable of causing mutations and other changes in the genetic material. This study aimed to investigate the molecular interactions between phthalate di(2-ethylhexyl) phthalate (DEHP) and its metabolites monobutyl phthalate (MBP) and monoethyl phthalate (MEP), interacting with DNA. The research was conducted using molecular modeling techniques such as molecular docking and molecular dynamics simulations. Molecular docking revealed that the DEHP, MBP, and MEP are able to establish hydrogen interactions with various nucleotide bases. Molecular dynamics simulations revealed that these molecules interacted with the DNA, and the binding free energy results demonstrated that the DNA-ligand interaction has favorable free energy. The values for free binding energy were as follows: DNA–DEHP, –21.66 kcal/mol; DNA–MBP, –17.29 kcal/mol; and DNA–MEP, –20.13 kcal/mol. For these three systems, the contributions of van der Waals, electrostatic, and nonpolar solvation energy were favorable for the interaction. The van der Waals interactions contributed the major energy to the intercalation of the binders.