Published in

MDPI, Remote Sensing, 7(11), p. 826, 2019

DOI: 10.3390/rs11070826

Links

Tools

Export citation

Search in Google Scholar

A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The United States Air Force’s 45th Weather Squadron provides wind warnings, including those for downbursts, at the Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC). This study aims to provide a Random Forest model that classifies thunderstorms’ downburst and null events using a 35-knot wind threshold to separate these two categories. The downburst occurrence was assessed using a dense network of wind observations around CCAFS/KSC. Eight dual-polarization radar signatures that are hypothesized to have physical implications for downbursts at the surface were automatically calculated for 209 storms and ingested into the Random Forest model. The Random Forest model predicted null events more correctly than downburst events, with a True Skill Statistic of 0.40. Strong downburst events were better classified than those with weaker wind magnitudes. The most important radar signatures were found to be the maximum vertically integrated ice and the peak reflectivity. The Random Forest model presented a more reliable performance than an automated prediction method based on thresholds of single radar signatures. Based on these results, the Random Forest method is suggested for continued operational development and testing.