Published in

Springer, Plant and Soil, 1-2(401), p. 409-426, 2015

DOI: 10.1007/s11104-015-2753-5

Links

Tools

Export citation

Search in Google Scholar

Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Aims Fine roots play a major role in the global carbon cycle through respiration, exudation and decomposition processes, but their dynamics are poorly understood. Current estimates of root dynamics have principally been observed in shallow soil horizons (2.5 m) root growth occurred at two distinct periods, at bud break in spring and throughout the winter i.e., after leaf fall. In contrast, shallow roots grew mainly during the spring-summer period. Maximum root elongation rates ranged from 1 to 2 cm day−1 depending on soil depth. Most root mortality occurred in upper soil layers whereas only 10 % of fine roots below 4 m died over the study period. Fine root lifespan was longer in thicker and in deeper roots with the lifespan of the thinnest roots (0.0–0.5 mm) increasing from 129 days in the topsoil to 190 at depths > 2.5 m. Conclusions The unexpected growth of very deep fine roots during the winter months, which is unusual for a deciduous tree species, suggests that deep and shallow roots share different physiological strategies and that current estimates based on the shortest root growth periods (i.e., during spring and summer) may be underestimating root production. Although high fine root turnover rates might partially result from the minirhizotron approach used, our results help gain insight into some of the factors driving soil organic carbon content. (Résumé d'auteur)