Published in

VINČA Institute of Nuclear Sciences, Thermal Science, 3 Part B(24), p. 2125-2135, 2020

DOI: 10.2298/tsci180928104y

Links

Tools

Export citation

Search in Google Scholar

Numerical investigation of VPD process for drying of transformer’s insulation paper

Journal article published in 2019 by Cemil Yigit, Ahmet Aydin, Halit Yasar, Fatih Isik, Tahsin Engin
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The moisture content of oil-filled transformers insulation paper that is a cellulose-containing material comprises 8% to 10% of moisture by weight at ambient temperature and it is highly important to decrease the moisture content for effective use of a transformer. Vapor phase drying is more effective method for drying the insulation paper of the transformer as compared with other conventional methods due to less cycle time and energy consumption. The purpose of this paper is to design a solvent operated drying chamber in which drying of the insulation paper of oil filled transformer carried out. The approach of the present paper is to develop a numerical model to reduce the cycle time of the drying process. The unsteady flow, heat, and mass transfer phenomena were simulated by using CFD solver. Theoretical studies and a numerical model were conducted over thermal calculation in the drying process using solvent at different pressures. Theoretical calculations were used to validate the numerical model. Drying chamber was optimized by using response surface methodology. The result of the study showed that drying cycle time was decreased almost 14.3% with the new design. Furthermore, when the solvent was used instead of air as a heat carrier, the drying cycle time was reduced.