Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-09560-9

Links

Tools

Export citation

Search in Google Scholar

Single-molecule characterization of extrinsic transcription termination by Sen1 helicase

Journal article published in 2019 by S. Wang ORCID, Z. Han, D. Libri ORCID, O. Porrua ORCID, T. R. Strick ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractExtrinsic transcription termination typically involves remodeling of RNA polymerase by an accessory helicase. In yeast this is accomplished by the Sen1 helicase homologous to human senataxin (SETX). To gain insight into these processes we develop a DNA scaffold construct compatible with magnetic-trapping assays and from which S. cerevisiae RNA polymerase II (Pol II), as well as E. coli RNA polymerase (ecRNAP), can efficiently initiate transcription without transcription factors, elongate, and undergo extrinsic termination. By stalling Pol II TECs on the construct we can monitor Sen1-induced termination in real-time, revealing the formation of an intermediate in which the Pol II transcription bubble appears half-rewound. This intermediate requires ~40 sec to form and lasts ~20 sec prior to final dissociation of the stalled Pol II. The experiments enabled by the scaffold construct permit detailed statistical and kinetic analysis of Pol II interactions with a range of cofactors in a multi-round, high-throughput fashion.