Published in

IOS Press, Mobile Information Systems, (2019), p. 1-8, 2019

DOI: 10.1155/2019/6536925

Links

Tools

Export citation

Search in Google Scholar

TANet: A Tiny Plankton Classification Network for Mobile Devices

Journal article published in 2019 by Xiu Li ORCID, Rujiao Long ORCID, Jiangpeng Yan ORCID, Kun Jin ORCID, Jihae Lee ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper is devoted to a lightweight convolutional neural network based on the attention mechanism called the tiny attention network (TANet). The TANet consists of three main parts termed as a reduction module, self-attention operation, and group convolution. The reduction module alleviates information loss caused by the pooling operation. The new parameter-free self-attention operation makes the model to focus on learning important parts of images. The group convolution achieves model compression and multibranch fusion. Using the main parts, the proposed network enables efficient plankton classification on mobile devices. The performance of the proposed network is evaluated on the Plankton dataset collected by Oregon State University’s Hatfield Marine Science Center. The results show that TANet outperforms other deep models in speed (31.8 ms per image), size (648 kB, the size of the hard disk space occupied by the model), and accuracy (Top-1 76.5%, Top-5 96.3%).