Published in

MDPI, Nanomaterials, 3(9), p. 484, 2019

DOI: 10.3390/nano9030484

Links

Tools

Export citation

Search in Google Scholar

On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries

Journal article published in 2019 by Marta Cabello ORCID, Gregorio F. Ortiz ORCID, Pedro Lavela ORCID, José L. Tirado ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Magnesium batteries are a promising technology for a new generation of energy storage for portable devices. Attention should be paid to electrolyte and electrode material development in order to develop rechargeable Mg batteries. In this study, we report the use of the spinel lithium titanate or Li4Ti5O12 (LTO) as an active electrode for Mg2+-ion batteries. The theoretical capacity of LTO is 175 mA h g−1, which is equivalent to an insertion reaction with 1.5 Mg2+ ions. The ability to enhance the specific capacity of LTO is of practical importance. We have observed that it is possible to increase the capacity up to 290 mA h g−1 in first discharge, which corresponds to the reaction with 2.5 Mg2+ ions. The addition of MgCl2·6H2O to the electrolyte solutions significantly improves their electrochemical performance and enables reversible Mg deposition. Ex-situ X-ray diffraction (XRD) patterns reveal little structural changes, while X-ray photoelectron spectrometer (XPS) (XPS) measurements suggest Mg reacts with LTO. The Ti3+/Ti4+ ratio increases with the amount of inserted magnesium. The impedance spectra show the presence of a semicircle at medium-low frequencies, ascribable to Mg2+ ion diffusion between the surface film and LTO. Further experimental improvements with exhaustive control of electrodes and electrolytes are necessary to develop the Mg battery with practical application.