Published in

EDP Sciences, Astronomy & Astrophysics, (623), p. A155, 2019

DOI: 10.1051/0004-6361/201834931

Links

Tools

Export citation

Search in Google Scholar

Theoretical investigation of energy levels and transition data for S II, Cl III, Ar IV

Journal article published in 2019 by P. Rynkun, G. Gaigalas ORCID, P. Jönsson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aims. The aim of this work is to present accurate and extensive results of energy spectra and transition data for the S II, Cl III, and Ar IV ions. These data are useful for understanding and probing physical processes and conditions in various types of astrophysical plasmas.Methods. The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2K, are used in the present work. In the RCI calculations the transverse-photon (Breit) interaction, the vacuum polarization, and the self-energy corrections are included.Results. Energy spectra are presented comprising the 134, 87, and 103 lowest states in S II, Cl III, and Ar IV, respectively. Energy levels are in very good agreement with NIST database recommended values and associated with smaller uncertainties than energies from other theoretical computations. Electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition data are computed between the above states together with the corresponding lifetimes. Based on internal validation, transition rates for the majority of the stronger transitions are estimated to have uncertainties of less than 3%.