Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Gene Therapy, 4(5), p. 552-555, 1998

DOI: 10.1038/sj.gt.3300613

Links

Tools

Export citation

Search in Google Scholar

Retroviral gene transfer to the liver in vivo during tri-iodothyronine induced hyperplasia

Journal article published in 1998 by Sj J. Forbes ORCID, M. Themis, Mr R. Alison, C. Selden, C. Coutelle, Hjf J. F. Hodgson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The liver is an important target organ for gene therapy but its mitotic quiescence makes it resistant to integrative gene transfer. Retrovirus-based vectors integrate into liver cells in vivo but require the liver to be primed before transduction; experimentally a 70% hepatectomy is commonly used to stimulate regeneration, rendering the liver susceptible to transduction during the resulting wave of cell proliferation. Our aim was to develop a clinically acceptable method of inducing hepatocyte replication before in vivo retroviral gene transfer which is both simple and effective. We have used the physiological hormone tri-iodothyronine (T3) to stimulate hepatocyte replication. A single dose of T3 (400 micrograms/100 g bw) was given subcutaneously to euthyroid rats. This produced a labelling index of 31.7% in the hepatocyte population without histological or biochemical evidence of preceding liver damage. Following T3 administration the rat livers were transfected in vivo with an amphotropic retrovirus, TELCeB/AF-7 which encodes the beta-galactosidase reporter gene together with a nuclear localisation signal. Transgene expression was noted only within the liver where 1.3% of hepatocytes expressed the beta-galactosidase enzyme. This compared to 5.2% of hepatocytes transduced following a 70% hepatectomy, and 0.02% in animals receiving neither T3 nor partial hepatic resection before transduction. T3 administration is a simple way to prime the liver before in vivo retroviral vector-based gene transfer.