Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Proteomics, 12(4), p. 3776-3782, 2004

DOI: 10.1002/pmic.200400851

Links

Tools

Export citation

Search in Google Scholar

Improved mass spectrometric identification of gel-separated hydrophobic membrane proteins after sodium dodecyl sulfate removal by ion-pair extraction.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Separation and identification of hydrophobic membrane proteins is a major challenge in proteomics. Identification of such sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins by peptide mass fingerprinting (PMF) via matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) is frequently hampered by the insufficient amount of peptides being generated and their low signal intensity. Using the seven helical transmembrane-spanning proton pump bacteriorhodopsin as model protein, we demonstrate here that SDS removal from hydrophobic proteins by ion-pair extraction prior to in-gel tryptic proteolysis leads to a tenfold higher sensitivity in mass spectrometric identification via PMF, with respect to initial protein load on SDS-PAGE. Furthermore, parallel sequencing of the generated peptides by electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) was possible without further sample cleanup. We also show identification of other membrane proteins by this protocol, as proof of general applicability.