Published in

Springer (part of Springer Nature), Cellular and Molecular Life Sciences, 10(61), p. 1198-1207

DOI: 10.1007/s00018-004-4045-8

Links

Tools

Export citation

Search in Google Scholar

Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe AMIDA (autoantibody-mediated identification of antigens), a novel target identification technology based on the immunoprecipitation of disease-specific antigens by autologous serum antibodies followed by two-dimensional electrophoretic separation, and their identification via mass spectrometry. Twenty-seven potential carcinoma antigens were identified including proteins of hitherto unknown function. Validation of one of the identified antigens, cytokeratin 8, revealed its de novo expression in hyperplastic tissue, gradual overexpression with increasing malignancy, and ectopic localization on the cell surface. Furthermore, a strong prevalence of CK8-specific antibodies occurred in the serum of cancer patients already at early disease stages. In situ hybridization for one marker of unknown function, KIAA1273/TOB3, demonstrated its strong overexpression in head and neck carcinomas, thus making it a likely tumor antigen candidate. Eventually, AMIDA could foster significant improvements for the diagnosis and therapy of human diseases eliciting a humoral immune response, and allows for the rapid identification of new target molecules.