Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 6(11), p. 674, 2019

DOI: 10.3390/rs11060674

Links

Tools

Export citation

Search in Google Scholar

Improving GNSS Zenith Wet Delay Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm Season

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Benchmark data set collected within the European COST Action ES1206 has aimed to support the development and validation of advanced Global Navigation Satellite System (GNSS) tropospheric products, in particular high-resolution zenith delays and tropospheric gradients. In this work we utilize this unique data set to show that the interpolation of GNSS Zenith Wet Delays (ZWDs) can be improved by utilizing tropospheric gradients. To do this we first prove the concept with simulated observations, that is, zenith delays and tropospheric gradients derived from a Numerical Weather Model. We show how tropospheric gradients can be converted to ZWD gradients. Then the ZWD gradients together with the ZWDs at selected reference stations are used in an inverse distance weighting interpolation scheme to estimate the ZWD at some target station. For a station configuration with an average station distance of 50 km in Germany and a period of two months (May and June 2013), we find an improvement of 20% in interpolated ZWDs when tropospheric gradients are taken into account. Next, we replace the simulated by real observations, that is, zenith delays and tropospheric gradients from a Precise Point Positioning (PPP) solution provided with the G-Nut/Tefnut analysis software. Here we find an improvement of 10% in interpolated ZWDs when tropospheric gradients are taken into account.