Published in

American Chemical Society, Journal of the American Chemical Society, 27(132), p. 9328-9334, 2010

DOI: 10.1021/ja100345z

Links

Tools

Export citation

Search in Google Scholar

Electrospray Mass Spectrometry of Telomeric RNA (TERRA) Reveals the Formation of Stable Multimeric G-Quadruplex Structures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on the self-assembled structures formed by 12-mer, 22-mer, and 45-mer telomeric RNA (telRNA/TERRA) sequences compared to their DNA analogues, as studied by electrospray mass spectrometry, circular dichroism, and thermal denaturation. The major difference between telomeric RNA and DNA sequences is the ability of telomeric RNA to form higher-order dimeric assemblies, initiated by cation-mediated stacking of two parallel G-quadruplex subunits. The 5′-5′ stacking had been observed recently by NMR for the r(GGGUUAGGGU) 10-mer (Martadinata, H.; Phan, A. T. J. Am. Chem. Soc. 2009, 131, 2570); the present work shows that stacking also occurs for the 22-mer containing four G-tracts and for the 45-mer containing eight G-tracts, suggesting a general structural feature of telomeric RNA. The importance of kinetic effects in multimer formation, unfolding, and structural rearrangements is also highlighted. ; Peer reviewed