Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6416(362), 2018

DOI: 10.1126/science.aau1810

Links

Tools

Export citation

Search in Google Scholar

In vivo modeling of human neuron dynamics and Down syndrome

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Development of human brain neurons The earliest stages of human brain development are very difficult to monitor, but using induced pluripotent stem cells (iPSCs) can help to elucidate the process. Real et al. transplanted neural progenitors derived from human iPSCs into the brains of adult mice. They used intravital imaging to visualize how resulting neurons grew and connected. The human cells produced neurons that integrated and developed synaptic networks with oscillatory activity. Dendritic pruning was observed and involved a process of branch retraction, not degeneration. Cells derived from individuals with Down syndrome, upon transplantation into the mouse brain, produced neurons that grew normally but showed reduced dendritic spine turnover and less network activity. Science , this issue p. eaau1810