Published in

MDPI, Molecules, 6(24), p. 1042, 2019

DOI: 10.3390/molecules24061042

Links

Tools

Export citation

Search in Google Scholar

Effects of Maltodextrins on the Kinetics of Lycopene and Chlorogenic Acid Degradation in Dried Tomato

Journal article published in 2019 by Pedapati Sri Harsha, Pedapati S. C. Sri Harsha, Vera Lavelli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Maltodextrins (MD) are frequently used as processing aids in tomato drying. The aim of this study was to investigate the effect of the addition of MD on the stability of lycopene and chlorogenic acid, which are the main lipophilic and hydrophilic antioxidants in processed tomato, respectively. Tomato powder added with 10% MD (dextrose equivalents, DE 12) and a control tomato powder were stored in the water activity (aw) range 0.17–0.56, for 180 d at 30 °C. At the aw level of 0.17, which was below the monolayer moisture content (Mo), chlorogenic acid was stable, while lycopene content decreased faster in tomato added with MD than in control tomato, probably due to a decrease in matrix hydrophilicity and greater oxygen diffusion in the oil phase. Maximum stability occurred in both tomato powders at aw of 0.3, that was in close proximity to Mo (first-order rate constant for lycopene, k = 7.0 × 10−3 d−1 in tomato added with MD). At high aw levels, MD increased the rate of lycopene degradation with respect to the control, possibly by hampering its regeneration by chlorogenic acid, which conversely was found to be more stable than in the control tomato.