Published in

MDPI, Nutrients, 3(11), p. 631, 2019

DOI: 10.3390/nu11030631

Links

Tools

Export citation

Search in Google Scholar

Iron Deficiency and Neuroendocrine Regulators of Basal Metabolism, Body Composition and Energy Expenditure in Rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Although dietary iron is a determinant of iron status in animals, body fat mass has been reported to have an inverse association with iron status in human studies. The goal of this study was to determine the relationship between Fe homeostasis, body composition, energy expenditure and neuroendocrine regulators for severe Fe-deficiency anaemia. Forty male Wistar albino rats recently weaned were divided at random into two groups: the control group was fed the basal diet, AIN-93G diet (normal-Fe) and the anaemic group received a low-Fe diet for 40 days. Neuroendocrine parameters that regulate basal metabolism and appetite (thyroid hormones, ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, insulin, adrenocorticotropic hormone and corticosterone), body composition, respiratory volumes, energy expenditure, haematological and biochemical were assessed. Total body fat was lower, whereas lean mass, free and total water were higher in the anemic group. O2 consumption, CO2 production, energy expenditure (EE) and respiratory quotient (RQ) were lower in the Fe-deficient animals. Triiodothyronine and thyroxine hormones decreased, while thyroid-stimulating hormone increased in the anemic group. Circulating levels of ghrelin were lower in the anemic group, while GIP, glucagon, insulin, corticosterone and adrenocorticotropic hormone levels were higher. Fe-deficiency impairs weight gain in the rats, with marked reductions in lean mass and body fat, indicating lower energy stores.