Published in

American Association for the Advancement of Science, Science, 6417(362), p. 952-956, 2018

DOI: 10.1126/science.aau2909

Links

Tools

Export citation

Search in Google Scholar

Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Visualizing TGF-β1 regulation by GARP Regulatory T cells (T regs ) can suppress immune responses through a variety of mechanisms. One such mechanism involves the activation of a surface-bound latent form of the cytokine transforming growth factor–β1 (TGF-β1). Within the cell, newly synthesized pro-TGF-β1 homodimers form disulfide bonds with the transmembrane protein GARP, which acts to chaperone and orient the cytokine for activation at the cell surface. Liénart et al. reveal how GARP interacts with TGF-β1, using a crystal structure in which the complex was stabilized using a Fab fragment from a monoclonal antibody (MHG-8) that binds to the complex. In so doing, they also demonstrate how MHG-8 prevents membrane-associated TGF-β1 release. These structural and mechanistic insights may inform treatments of diseases with altered TGF-β1 functionality and dysfunctional T reg activity, including cancer immunotherapy. Science , this issue p. 952