Published in

MDPI, Catalysts, 3(9), p. 252, 2019

DOI: 10.3390/catal9030252

Links

Tools

Export citation

Search in Google Scholar

An Enzyme Cascade Synthesis of Vanillin

Journal article published in 2019 by Tobias Klaus, Alexander Seifert, Tim Häbe, Bettina Nestl, Bernhard Hauer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A novel approach for the synthesis of vanillin employing a three-step two-enzymatic cascade sequence is reported. Cytochrome P450 monooxygenases are known to catalyse the selective hydroxylation of aromatic compounds, which is one of the most challenging chemical reactions. A set of rationally designed variants of CYP102A1 (P450 BM3) from Bacillus megaterium at the amino acid positions 47, 51, 87, 328 and 437 was screened for conversion of the substrate 3-methylanisole to vanillyl alcohol via the intermediate product 4-methylguaiacol. Furthermore, a vanillyl alcohol oxidase (VAO) variant (F454Y) was selected as an alternative enzyme for the transformation of one of the intermediate compounds via vanillyl alcohol to vanillin. As a proof of concept, the bi-enzymatic three-step cascade conversion of 3-methylanisole to vanillin was successfully evaluated both in vitro and in vivo.