Published in

MDPI, Water, 3(11), p. 471, 2019

DOI: 10.3390/w11030471

Links

Tools

Export citation

Search in Google Scholar

Experimental Observation of Inertial Particles through Idealized Hydroturbine Distributor Geometry

Journal article published in 2019 by Samuel Harding, Marshall Richmond ORCID, Robert Mueller ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To increase and maintain existing hydropower capacity within biological performance-based regulations, predictive simulation methods are needed that can reliably estimate the risk to fish passing through flow passage routes at hydropower facilities. One of the central challenges is to validate the software capabilities for simulating the trajectories, including collisions, of inertial particles against laboratory data. In this work, neutrally buoyant spherical- and rod-shaped beads were released upstream of laboratory-scale geometries representative of the distributor of a hydroturbine. The experimental campaign involved a test matrix of 24 configurations with variations in bead geometry, collision target geometry, flow speeds, and release locations. A total of more than 10,000 beads were recorded using high-speed video cameras and analyzed using particle tracking software. Collision rates from 1–7% were observed for the cylinder geometry and rates of 1–23% were observed for the vane array over the range of test configurations.