Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 5(12), p. 850, 2019

DOI: 10.3390/en12050850

Links

Tools

Export citation

Search in Google Scholar

Energy and Environmental Analysis of Membrane-Based CH4-CO2 Replacement Processes in Natural Gas Hydrates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Natural gas hydrates are the largest reservoir of natural gas worldwide. This paper proposes and analyzes the CH4-CO2 replacement in the hydrate phase and pure methane collection through the use of membrane-based separation. The investigation uses a 1 L lab reactor, in which the CH4 hydrates are formed in a quartz sand matrix partially saturated with water. CH4 is subsequently dissociated with a CO2 stream supplied within the sediment inside the reactor. An energy and environmental analysis was carried out to prove the sustainability of the process. Results show that the process energy consumption constitutes 4.75% of the energy stored in the recovered methane. The carbon footprint of the CH4-CO2 exchange process is calculated as a balance of the CO2 produced in the process and the CO2 stored in system. Results provide an estimated negative value, equal to 0.004 moles sequestrated, thus proving the environmental benefit of the exchange process.